Ячейки новой магнитной памяти

Ячейки новой магнитной памятиИсследователи из университета Миннесоты разработали структуру и создали опытные образцы магнитного туннельного перехода, состояние которого может быть переключено при помощи импульсов света, длительностью в одну триллионную долю секунды, что является абсолютным рекордом этого типа.

Такие переходы могут стать основой ячеек сверхскоростной магнитной памяти с оптическим управлением и спинтронных устройств, использующих для передачи и обработки информации волнообразное движение спинов электронов.

Традиционная структура магнитного туннельного перехода состоит из двух слоев различных магнитных материалов, разделенных изолирующим слоем, называемым барьером.
Информация записывается в такую ячейку памяти путем изменений намагниченности одного из слоев. Для этого, в большинстве случаев, используется движение вращающихся по спирали электронов, а процесс носит название спин-обработки. Однако, спин-обработка имеет верхний предел по быстродействию, который находится на частоте 1.66 ГГц, что значительно ниже быстродействия даже обычных кремниевых транзисторов.

Базой для создания магнитного перехода нового типа стали исследования, проведенные в 2007 году голландскими и японскими учеными. Они продемонстрировали, что сплав, состоящий из гадолиния (Gd), железа (Fe) и кобальта (Co) в определенных пропорциях может изменять свою намагниченность и другие параметры, имеющие отношение к магнетизму, под воздействием импульсов света. Этим сплавом исследователи из Миннесоты заменили верхний слой магнитного туннельного перехода. Еще одной модификацией исходной структуры перехода стало добавление к нему электрода из прозрачного токопроводящего материала — оксида олова-индия.
Вся структура магнитного туннельного перехода представляет собой круглый столбик, диаметром в 10 микрометров, что более чем в десять раз меньше толщины человеческого волоса.

Для проверки работоспособности перехода исследователи освещали его последовательностью импульсов инфракрасного света, генерируемых недорогим оптоволоконным лазером.
Период следования импульсов равнялся одной микросекунде (миллионная доля секунды), хотя длительность каждого импульса не превышала одно триллионной доли секунды.
Каждый раз, когда импульс света попадал на поверхность перехода, ученые наблюдали скачкообразное изменение напряжения на устройстве. А это изменение говорило о соответствующем изменении электрического сопротивления магнитного туннельного перехода.
Поскольку длительность импульса света равнялась одной пикосекунде, то при помощи такой технологии (в теории) можно получить скорость записи информации в магнито-оптичекую память на уровне 1 терабита в секунду.

Top Yandex

Информация

IP-KVM коммутатор

«Росэлектроника» начала поставки IP-KVM коммутаторов для удаленного управления серверами, компьютерами и станками с ЧПУ. Далее

ERP-система Русэлпром

Концерн Русэлпром успешно завершил внедрение собственной ERP-системы для управления производством электрических машин. Далее

Компании

Гран

Компания «ГРАН Груп» — российский разработчик, производитель и поставщик печатных плат. Далее

СКБ «Индукция»

Компания СКБ «Индукция» основана в 2004 году и с первых дней работы была ориентирована на выпуск широкой номенклатуры датчиков (бесконтактных выключателей): индуктивных, оптических, ёмкостных, герконовых. Далее

Технология Weidmuller Snap in
Telegram channel
Schmersal AZM40
Optidrive Elevator Core