Микросхема в одну молекулу

Микросхема в одну молекулуУченые НИТУ «МИСиС» изобрели самый тонкий в мире полупроводник с заданными свойствами, толщиной в одну молекулу.

Ученые успешно провели эксперимент по контролируемому созданию материала на основе частично окисленного оксида бора.

Группа исследователей во главе с профессором Дмитрием Гольбергом работала совместно с коллегами из Национального института материаловедения (Япония), Пекинского транспортного университета (КНР) и Технологического университета Квинсленда (Австралия).

Главный научный сотрудник Института биохимической физики РАН Леонид Чернозатонский подтвердил, что открытие ученых имеет общемировое значение. Однако, по его словам, до промышленных образцов электроники еще далеко.

Получен новый полупроводниковый материал на основе нитрида бора. У него можно контролируемым способом менять ширину запрещенной зоны путем изменения концентрации кислорода, — сообщил Леонид Чернозатонский. Предложенный метод позволяет быстро и просто — а значит, дешево — получить материал с контролируемой запрещенной зоной.

Ширина запрещенной зоны — термин из физики твердого тела. Значение этого параметра определяет, относится ли материал к проводникам, полупроводникам или диэлектрикам.
Нанося разное количество кислорода на разные части нитрида бора, можно управлять его «проводимостью» и как бы рисовать на пленке нужную микросхему.

Ученые, с помощью суперкомпьютерного кластера Cherry, выстроили теоретическую модель нового материала. Далее в ходе эксперимента удалось создать опытный образец, который полностью соответствовал модели.

Данное открытие позволит активно использовать этот материал в таких областях науки и техники, как фотовольтаика, оптоэлектроника, хранение энергии.

Как известно, полупроводники являются основой современной электроники. За миниатюризацию борются все лидеры этой отрасли. Открытие позволит, например, создать не микропроцессор, а нанопроцессор — в тысячи раз меньше существующих.

По словам исследователей, он будет потреблять меньше энергии, что приведет к миниатюризации аккумуляторов и появлению массовой «незаметной» электроники — невесомых кардиостимуляторов, дешевых очков с дополненной реальностью, телефонов-сережек и других гаджетов, которые пока сделать либо дорого, либо вообще невозможно.

Доцент Института нанотехнологий в электронике, спинтронике и фотонике НИЯУ МИФИ Алексей Грехов рассказал, что изучение свойств низкоразмерных структур или наноструктур — популярная тема экспериментальных и теоретических исследований в последнее время. В 2010 году двое российских ученых получили Нобелевскую премию за исследование графена — другого материала с подобными свойствами.

Прикладное значение таких материалов разнообразно — от электроники и сенсоров до биосовместимых структур.
В электронике перспективы таких элементов очевидны: уменьшается энергоемкость, повышается быстродействие и компактность. Однако до практического применения данных материалов еще далеко.

Работа проведена в рамках инфраструктурного проекта НИТУ «МИСиС» «Теоретическое материаловедение наноструктур», созданного в соответствии с Программой повышения конкурентоспособности ведущих российских университетов среди ведущих мировых научно-образовательных центров (Проект 5-100).

Sale Netelectro

Информация

Новый демультиплексор

Казанское предприятие холдинга «Швабе» Госкорпорации Ростех запатентовало уникальный демультиплексор со спектральным разделением. Далее

Компании

Gudel

Группа Gudel является мировым разработчиком и изготовителем продукции, систем и поставщиком услуг в области промышленной автоматизации. Далее

NIVELCO

Группа NIVELCO, со штаб-квартирой в г. Будапешт (Венгрия), — разработчик, производитель и поставщик приборов для измерения уровня и температуры. Далее

Продвижение сайтов
Световые завесы Schmersal SLC_SLG 440 AS
Преобразователи частоты Rexroth VFC и EFC
Шинопроводы Legrand Zucchini
Moxa on Eloborud